Affiliation:
1. Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
2. College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
3. Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
Abstract
Vibrio harveyi can cause infections and diseases in a variety of marine vertebrates and invertebrates, which are harmful to the aquaculture industry. The LuxS quorum-sensing system regulates the expression of virulence factors in a wide variety of pathogenic bacteria. In this study, an in-frame deletion of the luxS gene was constructed to reveal the role of LuxS in the physiology and virulence of V. harveyi. Statistical analysis showed no significant differences in the growth ability, biofilm formation, antibiotic susceptibility, virulence by intraperitoneal injection, and ability of V. harveyi to colonize the spleen and liver of the pearl gentian grouper between the wild-type (WT) and luxS mutant. However, deletion of luxS decreased the secretion of extracellular protease, while increasing swimming and swarming abilities. Simultaneously, a luxS-deleted mutant showed overproduction of lateral flagella, and an intact luxS complemented this defect. Since motility is flagella dependent, 16 V. harveyi flagella biogenesis related genes were selected for further analysis. Based on quantitative real-time reverse transcription-PCR (qRT-PCR), the expression levels of these genes, including the polar flagella genes flaB, flhA, flhF, flhB, flhF, fliS, and flrA and the lateral flagella genes flgA, flgB, fliE, fliF, lafA, lafK, and motY, were significantly upregulated in the ΔluxS: pMMB207 (ΔluxS+) strain as compared with the V. harveyi 345: pMMB207 (WT+) and C-ΔluxS strains during the early, mid-exponential, and stationary growth phases. Our results indicate that LuxS plays an important role in controlling motility, flagella biogenesis, and extracellular protease secretion in V. harveyi.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献