Author:
Auer Johannes,Lechner Konrad,Bock August
Abstract
Two transcriptional units coding for ribosomal proteins and protein synthesis elongation factors in Methanococcus vannielii have been cloned and analysed in detail. They correspond to the "streptomycin operon" and "spectinomycin operon" of the Escherichia coli chromosome. The following general conclusions can be drawn from comparison of the nucleotide and the derived amino acid sequences of ribosomal proteins from Methanococcus with those from eubacteria and eukaryotes. (i) Ribosomal protein and elongation factor genes in Methanococcus are clustered in transcriptional units corresponding closely to E. coli ribosomal protein operons with respect to both gene composition and organization. (ii) These transcriptional units contain, in addition, a few open reading frames whose putative gene products share sequence similarity with eukaryotic 80S but not with eubacterial, ribosomal proteins. They may correspond to "additional" ribosomal proteins of the Methanococcus ribosome, there being no functional homologues in the eubacterial ribosome. (iii) Methanococcus ribosomal proteins and elongation factors almost exclusively exhibit a higher sequence similarity to eukaryotic 80S ribosomal proteins than to those of eubacteria. (iv) Many Methanococcus ribosomal proteins have a size intermediate between those of their eukaryotic and eubacterial homologues. These results are discussed in terms of a hypothesis which implies that the recent eubacterial ribosome developed by a "minimization" process from a more complex organelle and that the archaebacterial ribosome has maintained features of this ancestor.Key words: archaebacteria, Methanococcus, transcription factors, clonal analysis.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献