Methylation of bone SOST impairs SP7, RUNX2, and ERα transactivation in patients with postmenopausal osteoporosis

Author:

Shan Yu12,Wang Liang1,Li Guangfei1,Shen Guangsi1,Zhang Peng1,Xu Youjia1

Affiliation:

1. Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.

2. Department of Orthopedics, the First People’s Hospital of Wujiang, Suzhou 215300, China.

Abstract

Sclerostin (SOST), a glycoprotein predominantly secreted by bone tissue osteocytes, is an important regulator of bone formation, and loss of SOST results in Van Buchem disease. DNA methylation regulates SOST expression in human osteocytes, although the detailed underlying mechanisms remain unknown. In this study, we compared 12 patients with bone fractures and postmenopausal osteoporosis with eight patients without postmenopausal osteoporosis to understand the mechanisms via which SOST methylation affects osteoporosis. Serum and bone SOST expression was reduced in patients with osteoporosis. Bisulfite sequencing polymerase chain reaction revealed that the methylation rate was higher in patients with osteoporosis. We identified osterix (SP7), Runt-related transcription factor 2 (RUNX2), and estrogen receptor α (ERα) as candidate transcription factors activating SOST expression. Increased SOST methylation impaired the transactivation function of SP7, RUNX2, and ERα in MG-63 cells. AzadC treatment and SOST overexpression in MG-63 cells altered cell proliferation and apoptosis. Chromatin immunoprecipitation showed that higher methylation was associated with reduced SP7, RUNX2, and ERα binding to the SOST promoter in patients with osteoporosis. Our studies provide new insight into the role of SOST methylation in osteoporosis.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3