Alteration of Bcl11b upon stimulation of both the MAP kinase- and Gsk3-dependent signaling pathways in double-negative thymocytes

Author:

Selman Wisam Hussein12,Esfandiari Elahe1,Filtz Theresa M.1

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA.

2. College of Veterinary Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq.

Abstract

B-cell lymphoma/leukemia 11B (Bcl11b) is a transcription factor critical for thymocyte development. We have previously characterized the kinetic post-translational modifications (PTMs) of Bcl11b in double-positive (DP) thymocytes during stimulation of the T cell receptor-activated MAP kinase pathway. However, the PTMs of Bcl11b in thymocytes from other developmental stages in the thymus, primarily double-negative (DN) cells, have not been previously identified. We found that kinetic modifications of Bcl11b in DN cells are somewhat different than the patterns observed in DP cells. Distinct from DP thymocytes, phosphorylation and sumoylation of Bcl11b in DN cells were not oppositely regulated in response to activation of MAP kinase, even though hyper-phosphorylation of Bcl11b coincided with near complete desumoylation. Additionally, prolonged stimulation of the MAP kinase pathway in DN cells, unlike DP thymocytes, did not alter Bcl11b levels of sumoylation or ubiquitinylation, or stability. On the other hand, activation of Wnt–Gsk3-dependent signaling in DN cells resulted in composite dephosphorylation and sumoylation of Bcl11b. Moreover, stimulation of MAP kinase and (or) Wnt signaling pathways differentially affects gene expression of some Bcl11b target and maturation-associated genes. Defining the signaling pathways and regulation of sequence-specific transcription factors by PTMs at various stages of thymopoiesis may improve our understanding of leukemogenesis.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3