Affiliation:
1. Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya 07070, Turkey.
2. Department of Chemistry and Biology and the Graduate Program in Molecular Science, Ryerson University, Toronto, ON M5B 2K3, Canada.
Abstract
Lysophosphatidic acid (LPA) is a small signaling phospholipid that mediates diverse functions including cell proliferation, migration, and survival by engaging LPA-agonized G-protein coupled receptors. Autophagy is a survival mechanism in response to nutrient depletion or organellar damage that encloses idle or damaged organelles within autophagosomes that are then delivered to lysosomes for degradation. However, the relationship between LPA and autophagy is largely unknown. The purpose of this study is to elucidate whether LPA affects autophagy through the ERK1/2 and (or) the Akt–mTOR signaling pathways. In this study, we investigated the effect of LPA on autophagy-regulating pathways in various prostate-derived cancer cells including PC3, LNCaP, and Du145 cells grown in complete medium and exposed to serum-free medium. Using Western blotting and ELISA, we determined that LPA stimulates the ERK and mTOR pathways in complete and serum-free medium. The mTOR pathway led to phosphorylation of S6K and ULK, which respectively stimulates protein synthesis and arrests autophagy. Consistent with this, LPA exposure suppressed autophagy as measured by LC3 maturation and formation of GFP-LC3 puncta. Altogether, these results suggest that LPA suffices to activate mTORC1 and suppress autophagy in prostate cancer cells.
Publisher
Canadian Science Publishing
Subject
Cell Biology,Molecular Biology,Biochemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献