Differential expression of leaf proteome of tolerant and susceptible maize (Zea mays L.) genotypes in response to multiple abiotic stresses

Author:

Rafique Suphia11

Affiliation:

1. Department of Biotechnology, Faculty of Chemicals and Life Sciences, Jamia Hamdard, New Delhi, 110062, India.

Abstract

In the present work, tropical maize genotypes were evaluated for multiple stresses (drought × low-N and waterlogging × low-N) applied simultaneously to 30-day-old maize seedlings. Two-dimensional gel electrophoresis was used to examine the protein changes induced by combined stress, in leaves, of tolerant and susceptible genotypes. Moreover, physiological and biochemical parameters were assessed to understand the physiological status of tolerant and susceptible genotypes under combined stress. The results show that up-regulated proteins of the tolerant genotype have a significant role in activating defense response, restoration of plant growth, and to maintain metabolic homeostasis under stressful conditions. Therefore, they contribute to improve and maintain the state of acclimation of the genotype under stress. Alternatively in the susceptible genotype, the up-regulated proteins are representative biomarkers of stress or are involved in the defense against pathogens and efforts to maintain energy metabolism. Thus, protecting the survival of the genotype under multiple stress conditions. We conclude that depending on the given stress treatment, tolerant and susceptible genotypes differed in stress-enduring approaches. Therefore, the study provides insight to comprehend the response of tolerant and susceptible genotypes under combined stress conditions, which could be valuable for further research and will demonstrate that it is advantageous to select combined stress-tolerant genotypes.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3