Nuclear and chromatin composition of mammalian gametes and early embryos

Author:

Clarke Hugh J.

Abstract

Changes in nuclear structure and chromatin composition regulate gene activity in many cell types and could play a similar role during early mammalian embryogenesis. Oocytes of the mouse contain the three major lamin species present in somatic cells, although lamin A synthesized by oocytes has a higher molecular mass than the somatic species. Oocyte chromatin contains core histones similar to those of somatic cells, as well as elements that are immunologically related to protamines. In contrast, somatic-type histone H1 is not present. DNA topoisomerase II has not yet been identified in mammalian oocytes, but is abundant in frog oocytes. In contrast to oocytes, sperm do not contain a typical nuclear lamina. DNA topoisomerase II is detectable until late spermiogenesis. Although the DNA of sperm is associated mainly with protamines, some histone may be retained. There is also evidence that the arrangement of the DNA in the nucleus is nonrandom. These results demonstrate differences in nuclear and chromatin composition between oocytes and sperm. After fertilization, the nuclei of cleavage-stage blastomeres undergo programmed modifications. Lamin B is synthesized, whereas lamin A is not. In addition, a set of nuclear proteins is transiently synthesized in mice at the two-cell stage. Changes in embryonic chromatin composition also occur. The relative abundance of transcripts from different core histone genes differs between mouse oocytes and blastocysts. Furthermore, somatic histone H1 becomes detectable beginning at the mid-four-cell stage. As well, during early cleavage stages, expression of plasmid-borne genes becomes dependent on enhancers. Thus, developmentally regulated changes in nuclear and chromatin composition occur during early mammalian embryogenesis, and these may be important for the initiation and regulation of embryonic gene activity.Key words: chromatin, nucleus, embryogenesis, gametogenesis, mammals.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3