Affiliation:
1. Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA.
Abstract
Forest pathogens and insects can accelerate tree mortality, increase stand structural heterogeneity, and alter tree community composition. In northern California, the canopy trees Abies concolor var. lowiana (Gord. & Glend.) Lemmon (white fir) and Pseudotsuga menziesii var. menziesii (Mirbel) Franco (Douglas-fir) co-occur but vary in shade tolerance and regenerative abilities following disturbance. Field observations suggested that mortality and turnover of white fir exceeded that of Douglas-fir and that native pathogens may be important drivers in the absence of fire. Pathogens and bark beetles were sampled in old-growth white fir – Douglas-fir stands in northwestern California to assess their contribution to tree mortality, gap formation, and regeneration. We determined abundances and size class distributions of canopy trees, presence of pathogens and bark beetles, and causes of tree mortality. We sampled canopy gaps and closed-canopy forests for overstory species composition, cause of mortality of gap-maker trees, and regeneration of white fir and Douglas-fir. Root-rot fungi accounted for significantly higher mortality and gap formation in white fir than in Douglas-fir. Relative seedling–sapling density of Douglas-fir was higher in pathogen-induced canopy gaps than in closed-canopy forest. In the absence of fire, native forest pathogens enable regeneration and persistence of Douglas-fir by enhancing mortality of white fir, resulting in canopy gap formation.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献