Native forest pathogens facilitate persistence of Douglas-fir in old-growth forests of northwestern California

Author:

Hawkins Ashley E.1,Henkel Terry W.1

Affiliation:

1. Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA.

Abstract

Forest pathogens and insects can accelerate tree mortality, increase stand structural heterogeneity, and alter tree community composition. In northern California, the canopy trees Abies concolor var. lowiana (Gord. & Glend.) Lemmon (white fir) and Pseudotsuga menziesii var. menziesii (Mirbel) Franco (Douglas-fir) co-occur but vary in shade tolerance and regenerative abilities following disturbance. Field observations suggested that mortality and turnover of white fir exceeded that of Douglas-fir and that native pathogens may be important drivers in the absence of fire. Pathogens and bark beetles were sampled in old-growth white fir – Douglas-fir stands in northwestern California to assess their contribution to tree mortality, gap formation, and regeneration. We determined abundances and size class distributions of canopy trees, presence of pathogens and bark beetles, and causes of tree mortality. We sampled canopy gaps and closed-canopy forests for overstory species composition, cause of mortality of gap-maker trees, and regeneration of white fir and Douglas-fir. Root-rot fungi accounted for significantly higher mortality and gap formation in white fir than in Douglas-fir. Relative seedling–sapling density of Douglas-fir was higher in pathogen-induced canopy gaps than in closed-canopy forest. In the absence of fire, native forest pathogens enable regeneration and persistence of Douglas-fir by enhancing mortality of white fir, resulting in canopy gap formation.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

Reference48 articles.

1. Allen, E.A., Morrison, D.J., and Wallis, G.W. 1996. Common tree diseases of British Columbia. Pacific Forestry Centre, Victoria, British Columbia.

2. Basidiospores of Phaeolus schweinitzii: a source of soil infestation

3. Distribution of Armillaria Species in California

4. Ecology of Armillaria spp. in Mixed-Hardwood Forests of California

5. Beals smoothing revisited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3