Author:
Bressler David C,Leskiw Brenda K,Fedorak Phillip M
Abstract
Previous studies showed that benzothiophene and 3- and 5-methylbenzothiophenes are oxidized by some bacteria to yield their corresponding sulfones, which were not subsequently degraded. In this study, a filamentous bacterium was isolated, which grew on each of these three sulfones as its sole carbon, sulfur, and energy source. Based on 16S rRNA gene sequencing and scanning electron microscopy, the isolate was found to belong to the genus Pseudonocardia and assigned the strain designation DB1. Benzothiophene sulfone and 3-methylbenzothiophene sulfone were more readily biodegraded than 5-methylbenzothiophene sulfone, and growth on these three compounds resulted in the release of 57, 62, and 28% of the substrate carbon as CO2, respectively. The thiophene ring was also cleaved, and between 44 and 88% of the sulfur from the consumed substrate was found as sulfate and (or) sulfite. Strain DB1 grew on benzoate, dibenzothiophene sulfone, and hexadecanoic acid, but it could not grow on benzofuran, dibenzothiophene, dibenzothiophene sulfoxide, hexadecane, indole, naphthalene, phenol, 2-sulfobenzoic acid, sulfolane, benzothiophene, or 3- or 5-methylbenzothiophenes. In addition, it did not oxidize the latter three compounds to their sulfones.Key words: benzothiophene sulfone, biodegradation, mineralization, sulfur heterocycles, Pseudonocardia.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献