Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeon

Author:

Robles Francisca,de la Herrán Roberto,Ludwig Arne,Rejón Carmelo Ruiz,Rejón Manuel Ruiz,Garrido-Ramos Manuel A

Abstract

Ribosomal DNA in sturgeon is informative when analyzed at the molecular level because it bears unique characteristics that are, to a certain extent, ancestral within vertebrates. In this paper, we examine the structure and the molecular evolution of the 5S ribosomal DNA (rDNA) region in 13 sturgeon species, comparing both the 5S ribosomal RNA (rRNA) genes and the non-transcribed spacer (NTS) sequences between the coding regions. We have found that different NTS and 5S gene variants are intermixed in the 5S rDNA arrays of the different sturgeon species and that all variants are ancestral, having been maintained over many millions of years. Using predictive models, we have found similar levels of sequence diversity in the coding regions, as well as in the non-coding region, but fixed interspecific differences are underrepresented for 5S genes. However, contrary to the expectations, we have not found fixed differences between NTS sequences when comparing many pairs of species. Specifically, when they belong to the same phylogeographic clade of the four into which the sturgeon is divided, but fixation of mutations and divergence is found between species belonging to different phylogeographic clades. Our results suggest that the evolution of the two parts of the 5S rDNA region cannot be explained exclusively as the outcome of a balance between mutational, homogenizing (i.e., gene conversion as a predominant force in sturgeon), and selective forces. Rather, they suggest that other factors (i.e., hybridization) might be superimposed over those forces and thus could to some extent be masking their effects.Key words: sturgeon, 5S rDNA, NTS sequence, 5S gene, concerted evolution, sequence homogenization, gene conversion, hybridization.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3