Author:
Neumann Pavel,Nouzová Marcela,Macas Jirí
Abstract
A set of pea DNA sequences representing the most abundant genomic repeats was obtained by combining several approaches. Dispersed repeats were isolated by screening a short-insert genomic library using genomic DNA as a probe. Thirty-two clones ranging from 149 to 2961 bp in size and from 1000 to 39 000/1C in their copy number were sequenced and further characterized. Fourteen clones were identified as retrotransposon-like sequences, based on their homologies to known elements. Fluorescence in situ hybridization using clones of reverse transcriptase and integrase coding sequences as probes revealed that corresponding retroelements were scattered along all pea chromosomes. Two novel families of tandem repeats, named PisTR-A and PisTR-B, were isolated by screening a genomic DNA library with Cot-1 DNA and by employing genomic self-priming PCR, respectively. PisTR-A repeats are 211212 bp long, their abundance is 2 × 104copies/1C, and they are partially clustered in a secondary constriction of one chromosome pair with the rest of their copies dispersed on all chromosomes. PisTR-B sequences are of similar abundance (104copies/1C) but differ from the "A" family in their monomer length (50 bp), high A/T content, and chromosomal localization in a limited number of discrete bands. These bands are located mainly in (sub)telomeric and pericentromeric regions, and their patterns, together with chromosome morphology, allow discrimination of all chromosome types within the pea karyotype. Whereas both tandem repeat families are mostly specific to the genus Pisum, many of the dispersed repeats were detected in other legume species, mainly those in the genus Vicia.Key words: repetitive DNA, plant genome, retroelements, satellite DNA, Pisum sativum.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献