Properties of an in vitro system for studying temperature-sensitive DNA synthesis in ts A1S9 mouse L-cells

Author:

Humbert Jerome,Sheinin Rose

Abstract

The in vitro DNA synthesis has been observed in whole cell lysates and in cytosol and nuclear fractions of wild-type (WT-4) mouse L-cells and ts A1S9 cells which exhibit temperature-sensitive (ts) DNA replication in vivo. The product, labelled with substrate 3H-labelled TTP, is resistant to alkali and has the buoyant density (1.709 g/cm3) expected for normal mouse DNA. Pulse-chase studies, in which newly made, single-stranded DNA was analyzed by velocity sedimentation in alkaline sucrose density gradients, revealed that in vitro DNA synthesis proceeds by a discontinuous mechanism. Approximately half of the DNA made in a 30-s pulse sedimented at 3–8S; the rest was very heterogeneous with S values between [Formula: see text] and 30S. After incubation for up to 300 s, a majority of the newly made DNA (>85%) sedimented as the larger, heterogeneous material, with some cosedimenting with chromosomal size DNA.The ts DNA synthesis phenotype of ts A1S9 cells is expressed in vitro. Thus, the activity of extracts of ts cells incubated at the nonpermissive (38.5 °C) temperature was commensurate with the in vivo activity. Restriction of the ts phenotype to DNA synthesis is evident in vitro since the RNA synthetic activity of lysates of temperature-inactivated ts A1S9 cells was equivalent to that of extracts obtained from cells grown at the permissive temperature (33.5 °C). The DNA synthetic activity of nuclei from WT-4 or ts A1S9 cells grown at 33.5 °C plus homologous cytosol is equivalent to that of the whole lysate. In contrast, such cytosol preparations give little, if any, enhancement of the activity of nuclei from ts A1S9 cells incubated at 38.5 °C for 16 h. The cytosol of such temperature-inactivated cells, which are almost fully effective with nuclei of control cells, produce little or no enhancement of DNA synthesis by homologous nuclei.

Publisher

Canadian Science Publishing

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3