Modified Cam-Clay modelling of temperature effects in clays

Author:

Graham J,Tanaka N,Crilly T,Alfaro M

Abstract

The Cam-Clay model for isothermal mechanical behaviour of clays has been extended to take account of the effects of temperature on stress–strain behaviour. The assumptions used in constructing the new model are based on published results and on new data presented in the paper. The model allows prediction of how heating and cooling affect volume changes, pore-water pressures, and strengths for both normally consolidated and overconsolidated saturated clays. It permits modelling of observed reductions in the overconsolidation ratio with increasing temperature. The model provides accessible qualitative explanations for temperature effects that were previously difficult to understand. It will also allow easy implementation for quantitative modelling in triaxial stress fields. Results predicted by the model are compared with data collected by the authors at temperatures up to 100°C. The model does not account for changes that occur in clay minerals at higher temperatures, for example, in bentonites at temperatures higher than about 150°C.Key words: clay, triaxial, temperature, modelling, elastic–plastic, Cam-Clay.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3