Author:
Mark Brian L,James Michael NG
Abstract
Configuration retaining glycosidases catalyse the hydrolysis of glycosidic bonds via a double displacement mechanism, typically involving two key active site carboxyl groups (Glu or Asp). One of the enzymic carboxyl groups functions as a general acidbase catalyst, the other acts as a nucleophile. Alternatively, configuration-retaining hexosaminidases from the sequence-related glycosidase families 18, 20, and 56 lack a suitably positioned enzymic nucleophile; instead, they use the carbonyl oxygen atom of the neighbouring C2-acetamido group of the substrate. The carbonyl oxygen atom of the 2-acetamido group provides anchimeric assistance to the enzyme catalyzed reaction by acting as an intramolecular nucleophile, attacking the anomeric center and forming a cyclized oxazolinium ion intermediate that is stereochemically equivalent to the glycosylenzyme intermediate formed in the "normal" double displacement mechanism. Although there is little sequence similarity between families 18, 20, and 56 hexosaminidases, X-ray crystallographic studies demonstrate that they have evolved similar catalytic domains and active site architectures that are designed to distort the bound substrate so that the C2-acetamido group can become appropriately positioned to participate in catalysis. The substrate distortion allows for a substrate-assisted catalytic reaction that displays all the general characteristics of the classic double-displacement mechanism including the formation of a covalent intermediate.Key words: glycoside hydrolase, hexosaminidase, glycosidase, substrate-assisted catalysis, anchimeric assistance.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献