The importance of conformation in the reactivity of radical cations. Changing configuration at saturated carbon centres

Author:

Perrott Allyson L.,Arnold Donald R.

Abstract

Irradiation of an acetonitrile solution of cis 1-methyl-2-phenylcyclopentane (1bcis); 1,4-dicyanobenzene (2), an electron-accepting photosensitizer; and 2,4,6-collidine (3), a nonnucleophilic base, leads to configurational isomerization of the cyclopentane; the photostationary state lies > 99% in favour of the trans isomer. The mechanism proposed for this reaction involves formation of the radical cation of 1bcis by photoinduced electron transfer to the singlet excited state of 2, deprotonation of the radical cation assisted by the base 3, reduction of the resulting benzylic radical by the radical anion [Formula: see text], and reprotonation of the benzylic anion to give both the cis and the trans isomers of 1b. The photostationary state is controlled by the relative rates of deprotonation of the radical cations of 1bcis and trans; these rates are dependent upon the extent of overlap of the SOMO of the radical cation, which is largely associated with the phenyl ring, and the benzylic carbon–hydrogen bond. Molecular mechanics calculations (MM3 and MMP2) are used to calculate the preferred conformations of the isomers. The required orbital overlap is 31% effective with the global minimum conformation of the cis isomer and essentially ineffective for the low-lying conformations of the trans isomer. This proposed mechanism is supported by Stem–Volmer quenching studies, which indicate that both isomers quench the singlet excited state of 2 at the diffusion-controlled rate, and by deuterium incorporation studies. When irradiation of the cis isomer is carried out in acetonitrile–methanol-O-d as solvent, isomerization is accompanied by deuterium exchange at the benzylic position; the trans isomer is stable under these conditions. Keywords: photosensitized electron transfer, radical cation, deprotonation, configurational isomerization, conformation, molecular mechanics (MM3).

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3