Author:
Shin Yunne-Jai,Cury Philippe
Abstract
For most fish species, strong environmental constraints imposed by living in an aquatic medium have produced converging streamlined body forms without prehensile appendices. This similarity in body shapes highlights a common predation constraint: a predatory fish must have a jaw large enough to swallow its prey. Fish diets may then reflect local prey availability and predatorprey size ratios. Based on this size-based opportunistic predation process, the multispecies individual-based model OSMOSE (Object-oriented Simulator of Marine ecOSystem Exploitation) is used to investigate to what extent the size distribution of fish communities can contribute to better our understanding of the functioning of marine food webs and the ecosystem effects of fishing. Strong similarity in shape is found between simulated size spectra and those described in empirical studies. The existence of a curvature towards small size classes is discussed in the light of the size-based predation hypothesis, which implies that smaller fish may undergo higher predation mortality. Applying linear and quadratic regressions to the simulated size spectra allows the detection of variations in fishing pressure and the proposal of different ways to quantify them. In particular, it is shown that the slope of the size spectrum decreases quasilinearly with fishing mortality and that the curvature could help to detect ecosystem overexploitation.
Publisher
Canadian Science Publishing
Subject
Aquatic Science,Ecology, Evolution, Behavior and Systematics
Cited by
208 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献