Author:
Schaefer Ted,Sebastian Rudy,Hruska Frank E.
Abstract
The 1H nuclear magnetic resonance spectral parameters are reported for triphenylphosphine as solutions in CS2/C6D12 and acetone-d6 at 300 K. The internal rotational potential opposing torsion about the P—C bond is computed by AMI and STO-3G MO methods. The computed potentials are used to calculate the average shielding of the para protons caused by the diamagnetic anisotropies of the neighbouring phenyl groups. The results are used to estimate the degree of electron delocalization from the lone pair on phosphorus. The extent of delocalization depends on the internal motions and comparisons are made with phenylphosphine. The maximum possible screening of the para protons in phenylphosphine is calculated as 0.19 ppm for a conformation in which the lone pair on phosphorus is oriented perpendicular to the aromatic plane. The intramolecular rotational potentials then yield 0.029 ppm as the shielding of the para protons in triphenylphosphine due to electron delocalization, just as found for the CS2/C6D12 solution after correction for diamagnetic anisotropy fields.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献