Effect of a magnetic field on the fluorescence produced in irradiated anthracene solutions

Author:

Dixon R. S.,Sargent F. P.,Lopata V. J.,Gardy E. M.,Brocklehurst B.

Abstract

The effect of an applied magnetic field on the fluorescence from radiolytic ion recombination has been studied for anthracene in some hydrocarbon solvents. In pulse-irradiated anthracene (10−2 mol dm−3) in squalane, the fluorescence intensity following the pulse increases as a function of applied magnetic field in the range studied, 0 to 0.3 T (0 to 3000 G). At a constant magnetic field strength, the field-induced enhancement of the fluorescence intensity varies with time after the pulse. At high field strengths (0.3 T) the enhancement reaches a maximum of ∼45% about 50 ns after the pulse. Similar effects are observed in cyclohexane but the enhancement is smaller than that in squalane. In benzene solutions the effect is extremely small. These findings are confirmed by observations in continuously gamma-irradiated solutions. In gamma-irradiated solutions of anthracene (10−2 mol dm−3) in squalane, the fluorescence intensity increases with increasing magnetic field and approaches ∼13% enhancement at high fields (>0.1 T). The enhancement is smaller (∼3%) in cyclohexane and very small (<1%) in benzene solutions. 9,10-Dimethylanthracene gives a larger enhancement and anthracene-d10 a smaller enhancement than the parent anthracene at high fields. The results are in general agreement with recent theoretical predictions based on the effect of a magnetic field on the loss of spin correlation of geminate ions pairs prior to recombination.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3