Is the perception of their own odour effective in orienting the exploratory activity of cave fishes?

Author:

Paglianti Annalisa12,Messana Giuseppe12,Cianfanelli Alessandro12,Berti Roberto12

Affiliation:

1. Università di Firenze, Dipartimento di Biologia animale e Genetica, Via Romana 17, 50125 Firenze, Italy.

2. Istituto per lo Studio degli Ecosistemi del Consiglio Nazionale delle Ricerche (ISE – CNR), Via Madonna del Piano, 50019 Sesto Fiorentino, Italy.

Abstract

Spatial knowledge of the surrounding environment is extremely important for animals to locate and efficiently exploit available resources (e.g., food, shelters, mates). Fishes usually acquire spatial information about their home range through vision, but vision fails in the dark and other sensory pathways have to be exploited. Fishes possess a remarkable olfactory system and have evolved a refined ability of chemical detection and recognition. Nevertheless, while the role of chemical cues in spatial orientation is well known in long-distance salmonid migrations, it has never been investigated in orientation within local, familiar areas. Here we report the first evidence that fish swimming can be topographically polarized by self-odour perception. When an unfamiliar area was experimentally scented with fish self-odour, the cave cyprinid Phreatichthys andruzzii Vinciguerra, 1924 behaved as if the area was previously explored. The fish preferred an odour-free area to a self-odour-scented one, and when offered the choice between a familiar and an unfamiliar area, they preferred the unexplored environment. Avoidance of self-odour-scented areas would allow effective exploration of the subterranean environment, minimizing the risks of repeatedly exploring the same water volumes. Our results are the first clear evidence that fish can use their own odour to orient their locomotor activity when visual cues are not available. This highlights the possible role of chemical information in fish orientation.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3