Abstract
An analytical model of behaviour is presented, which uses one-dimensional finite element approximations to predict the short-term load – slip response of a single fastener joint. The model treats the elastoplastic behaviour of the fastener as well as the nonlinear, nonelastic properties of the wood. It accounts for some of the distinctive behaviour of timber joints such as fastener withdrawal, rotational restraint at the fastener ends, joint interface characteristics, and combined fastener bending and axial tension. Good agreement is obtained between model predictions and test behaviour for single fastener glulam rivet, nail, and bolt joints. The model can be adapted to include the variability in wood and fastener properties, and can be incorporated into a large number of computer simulations in order to predict the fifth fractiles of the populations of joint resistances, which can be used in a limit states design approach. Key words: timber structures, glulam rivet connections, nailed connections, bolted connections, mathematical model, finite element, nonlinear analysis.
Publisher
Canadian Science Publishing
Subject
General Environmental Science,Civil and Structural Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献