Molecular tectonics — Use of urethanes and ureas derived from tetraphenylmethane and tetraphenylsilane to build porous chiral hydrogen-bonded networks

Author:

Laliberté Dominic,Maris Thierry,Wuest James D

Abstract

Tetraphenylmethane, tetraphenylsilane, and simple derivatives with substituents that do not engage in hydrogen bonding typically crystallize as close-packed structures with essentially no space available for the inclusion of guests. In contrast, derivatives with hydrogen-bonding groups are known to favor the formation of open networks that include significant amounts of guests. To explore this phenomenon, we synthesized six new derivatives 5a–5e and 6a of tetraphenylmethane and tetraphenylsilane with urethane and urea groups at the para positions, crystallized the compounds, and determined their structures by X-ray crystallography. As expected, all six compounds crystallize to form porous three-dimensional hydrogen-bonded networks. In the case of tetraurea 5e, 66% of the volume of the crystals is accessible to guests, and guests can be exchanged in single crystals without loss of crystallinity. Of special note are: (i) the use of tetrakis(4-isocyanatophenyl)methane (1f) as a precursor for making enantiomerically pure tetraurethanes and tetraureas, including compounds 5b, 5c; and (ii) their subsequent crystallization to give porous chiral hydrogen-bonded networks. Such materials promise to include chiral guests enantioselectively and to be useful in the separation of racemates, asymmetric catalysis, and other applications.Key words: crystal engineering, molecular tectonics, hydrogen bonding, networks, porosity, urethanes, ureas, tetraphenylmethane, tetraphenylsilane.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3