Author:
Belluk B.,Gupta M.,Singal P. K.
Abstract
The role of oxygen radicals and lipid peroxidation in calcium-paradox injury in isolated perfused rat hearts was studied by examining the effects of mannitol and (or) allopurinol on this phenomenon. Myocardial changes due to calcium paradox were characterized by contractile failure, a rise in resting tension, and cell damage. These changes were also accompanied by increased lipid peroxidation, as indicated by an increase in malondialdehyde content. Mannitol (an effective quencher of hydroxyl radicals) treatment resulted in a dose-dependent decrease in lipid peroxidation but did not affect other changes due to calcium paradox. Allopurinol (an inhibitor of xanthine oxidase) neither affected lipid peroxidation nor modified any of the structure–function changes due to calcium paradox. These data demonstrate the occurrence of lipid peroxidation which, however, may not be involved in the observed structure–function changes due to calcium paradox. It is also suggested that in this experimental model, xanthine oxidase may not be the inducer of oxygen radicals or of lipid peroxidation.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献