Author:
Manavathu Elias K.,Alangaden George J.,Lerner Stephen A.
Abstract
The effects of inoculum size, medium, temperature, and duration of growth on the in vitro susceptibility testing of Aspergillus fumigatus were investigated using broth micro- and macro-dilution techniques. The minimum inhibitory concentrations (MICs) of ketoconazole, miconazole, itraconazole, fluconazole, and amphotericin B were significantly influenced by the inoculum size, regardless of the techniques used. Two- to four-fold higher MIC values were obtained when the inoculum size was increased 100-fold. The use of peptone yeast extract glucose and RPMI 1640 media provided essentially identical MIC values at 30 and 35 °C after incubation for 48 h or longer. A comparison of broth micro- and macro-dilution techniques revealed that, under equivalent conditions, the latter with an inoculum size between 1 × 103and 1 × 104conidia (strain W73355)/mL consistently provided the lowest MICs of fluconazole (256 μg/mL), ketoconazole (8 μg/mL), miconazole (2 μg/mL), itraconazole (0.25 μg/mL), and amphotericin B (0.25 μg/mL). Using the broth macrodilution technique, we screened 24 clinical isolates of A. fumigatus obtained from the Detroit Medical Center in 1994. The MIC values of fluconazole, ketoconazole, miconazole, itraconazole and amphotericin B for all the isolates were 128–256, 8–16, 1–2, 0.25–0.5, and 0.25–1.0 μg/mL, respectively, indicating that none of the clinical isolates that we tested shows acquired resistance to the antifungals used.Key words: Aspergillus fumigatus, susceptibility test, antifungals, drug resistance, broth macrodilution.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献