Author:
Timonen Sari,Jørgensen Kirsten S,Haahtela Kielo,Sen Robin
Abstract
Bacteria were isolated and characterized from uncolonized soil, nonmycorrhizal and mycorrhizal short roots, and soil-colonizing external mycelium from intact Pinus sylvestris - Suillus bovinus and Pinus sylvestris - Paxillus involutus mycorrhizospheres developed in microcosms containing dry pine forest humus or nursery peat. Total numbers of colony-forming units (CFU/mg dry weight) in the different locations from all ectomycorrhizospheres indicated an overall bacterial-enrichment gradient towards the roots, whereas sporeformers were more evenly distributed. Fluorescent pseudomonads were commonly isolated from all mycorrhizosphere locations in nursery peat, but they were nearly absent from the forest humus community. In contrast, sporeformers were more abundant at all locations in the latter growth substrate. The bacterial species composition of forest and nursery mycorrhizospheres was clearly divergent when characterized according to their carbon source utilization patterns in Biolog®GN or GP microplates. Factorial-designed ANOVA of a principal component analysis of the carbon source utilization data showed significant differences between isolates from the two soil types and, to a lesser extent, between S. bovinus and Paxillus involutus mycorrhizospheres. Bacterial communities from mycorrhizospheres and uncolonized soil were distinguished by their preferential utilization of carbohydrates and organic and amino acids, respectively. Suillus bovinus associated bacteria appeared to favour mannitol and Paxillus involutus associated bacteria appeared to favour fructose as carbon sources. This study demonstrates the combined effect of soil type, fungal symbiont, and precise location on bacterial communities associated with Pinus sylvestris ectomycorrhizospheres.Key words: Biolog, carbon source utilization, ectomycorrhiza, Scots pine, soil bacteria.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献