Affiliation:
1. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.
Abstract
Among the three timberland return drivers (biological growth, timber price, and land price), timber price remains the most unpredictable. It affects not only periodic dividends from timber sales but also timber production strategies embedded in timberland management. Using various time series techniques, this study aimed to model and forecast real pine sawtimber stumpage prices in 12 southern timber regions in the United States. Under the discrete-time framework, the univariate autoregressive integrated moving average model was established as a benchmark, whereas other multivariate time series methods were applied in comparison. Under the continuous-time framework, both the geometric Brownian motion and the Ornstein–Uhlenbeck process were fitted. The results revealed that (i) the vector autoregressive model forecasted more accurately in the 1-year period by the mean absolute percentage error criterion, (ii) seven out of the 12 southern timber regions played dominant roles in the long-run equilibrium, and (iii) conditional variances and covariances from the bivariate generalized autoregressive conditional heteroscedasticity model well captured market risks.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献