Involvement of active oxygen species in protein and oligonucleotide degradation induced by nitrofurans

Author:

Zolla Lello,Timperio Anna Maria

Abstract

It is of great interest to know how nitrofurans are mutagenic and clastogenic. In particular, the 3-amino-2-oxazolidone (AOZ) ring, deriving from a cleavage of furazolidone, is not further metabolized and has been found to be part of protein-bound residues in edible tissues of farm animals and these might be released in the stomach of the consumer. The data in this paper show that isoniazide as well as AOZ and 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), the latter deriving from furaltadone, cause irreversible damage to the prosthetic group of enzymes as well as degrade their polypeptide chain and cause fragmentation of the backbone chain of cellular or isolated DNA and RNA. Cellular DNA was degraded into small fragments of 2000 Mb, while rRNA was completely destroyed. Nitrofuran derivatives and hydrazides, in fact, share an N–N moiety, which is assumed to play an essential role in the irreversible damage observed. The key to the molecular mechanisms by which these compounds cause their irreversible effects may lie in oxygen consumption and electron spin resonance measurements, which reveal that both nitrofurans and isoniazide produce oxygen radicals at various degrees of efficiency. AOZ and AMOZ are not metabolized into more reactive metabolites, being themselves able to react with atmospheric oxygen and induce protein and oligonucleotide damage. The reaction does not require metal ions, although their presence will accelerate it.Key words: nitrofurans, active oxygen, furazolidone, DNA degradation, protein fragmentation.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3