The role of molecular volume and the shape of the hole transport molecule in the morphology of model charge transport composites

Author:

Khan Ferdous1,Khanna Shalini1,Hor Ah-Mee1,Sundararajan P. R.1

Affiliation:

1. Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada.

Abstract

We present a study of the morphology and molecular interactions in a model charge transport composite with 1,1-bis(di-4-tolylaminophenyl) cyclohexane (TAPC) as the hole transport molecule in bisphenol-A polycarbonate (BPAPC) and cyclohexyl polycarbonate, also known as bisphenol-Z polycarbonate (PCZ). Solution NMR shows that while there is aromatic interaction between the phenyl groups of the polycarbonate and TAPC, the broadening of the peaks corresponding to the latter indicates a decrease in the rotational motion. FTIR spectroscopy also exhibits frequency shifts of the aromatic C–H absorption peaks, which parallels the extent of the depression of the glass transition temperature (Tg) of the polycarbonate. These are compared with the previous results for N,N-diphenyl-N,N-bis(3-methylphenyl)-[1,1-biphenyl]-4,4-diamine (TPD) and tri-p-tolylamine (TTA), and the differences are rationalized on the basis of the molecular shape and van der Waals volume of the small molecules. It is proposed that when the polycarbonate is in a random coil conformation, spherical small molecules (e.g., TAPC and TTA) reduce the glass transition temperature much more than a rodlike small molecule (e.g., TPD). Annealing at a temperature just below the Tg of the polycarbonate was used as a means of simulating accelerated ageing. Upon annealing, phase separation and crystallization of TAPC occurs and leads to a recovery of the Tg of the polymer significantly. The Tg recovery in this case is much more significant than in the case of TPD. The average crystal sizes are about ten times smaller than the crystals obtained in the case of TPD for the same temperature of annealing. To enhance the charge mobility, it might actually be advantageous to induce submicron crystals of the small molecule, while keeping the film transparent.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference56 articles.

1. Schein, L. B. Electrophotography and Development Physics, 2nd ed.; Springer-Verlag: New York, 1992.

2. Weiss, D. S. Organic Photoreceptors for Xerography, New York: Marcel Decker Inc., 1998

3. (a) Borsenberger, P. M.; Weiss, D. S. Organic Photoreceptors for Xerography, New York: Marcel Decker Inc., 1998;

4. (b) Melnyk, A.R.; Pai, D.M. In Hard Copy and Printing Materials, Media and Process; Gaynor, J., Ed.; Society of Photographic Instrumentation Engineers (SPIE): Bellingham, WA, USA, 1990; Vol. 1253; p 141.

5. Electroluminescence of Multicomponent Conjugated Polymers. 2. Photophysics and Enhancement of Electroluminescence from Blends of Polyquinolines

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3