Author:
Jentschura U D,Fahrbach F
Abstract
Ideal carving occurs when a snowboarder or skier, equipped with a snowboard or carving skis, describes a perfectly carved turn in which the edges of the ski alone, not the ski surface, describe the trajectory followed by the skier, without any slipping or skidding. In this article, we derive the "ideal-carving" equation that describes the physics of a carved turn under ideal conditions. The laws of Newtonian classical mechanics are applied. The parameters of the ideal-carving equation are the inclination of the ski slope, the acceleration of gravity, and the sidecut radius of the ski. The variables of the ideal-carving equation are the velocity of the skier, the angle between the trajectory of the skier and the horizontal, and the instantaneous curvature radius of the skier's trajectory. Relations between the slope inclination and the velocity range suited for nearly ideal carving are discussed, as well as implications for the design of carving skis and snowboards. PACS Nos.: 01.80.+b, 45.20.Dd
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献