Cadmium attenuates bradykinin-driven nitric oxide production by interplaying with the localization pattern of endothelial nitric oxide synthase

Author:

Majumder Syamantak1,Gupta Ravi1,Reddy Himabindu1,Sinha Swaraj1,Muley Ajit1,Kolluru Gopi Krishna1,Chatterjee Suvro1

Affiliation:

1. Vascular Biology Lab, Life Sciences Division, AU-KBC Research Centre, MIT Campus, Anna University, Chennai 600044, Tamil Nadu, India.

Abstract

Cadmium, a ubiquitous heavy metal, interferes with endothelial functions and angiogenesis. Bradykinin is a Ca-mobilizing soluble peptide that acts via nitric oxide to promote vasodilation and capillary permeability. The objective of the present study was to explore the Cd implications in bradykinin-dependent endothelial functions. An egg yolk angiogenesis model was employed to evaluate the effect of Cd on bradykinin-induced angiogenesis. The results demonstrate that 100 nmol/L Cd attenuated bradykinin-dependent angiogenesis. The results of the in vitro wound healing and tube formation assays by using EAhy 926, a transformed endothelial cell line, suggest that Cd blocked bradykinin-mediated endothelial migration and tube formation by 38% and 67%, respectively, while nitric oxide supplementation could reverse the effect of Cd on bradykinin-induced endothelial migration by 94%. The detection of nitric oxide by using a DAF-2DA fluorescent probe, Griess assay, and ultrasensitive electrode suggests that Cd blocked bradykinin-induced nitric oxide production. Fluorescence imaging of eNOS-GFP transfected endothelial cells, immunofluroscence, and Western blot studies of Cd and bradykinin-treated cells show that Cd interfered with the localization pattern of eNOS, which possibly attenuates nitric oxide production in part. Additionally, Ca imaging of Cd- and bradykinin-treated cells suggests that Cd blocked bradykinin-dependent Ca influx into the cells, thus partially blocking Ca-dependent nitric oxide production in endothelial cells. The results of this study conclude that Cd blunted the effect of bradykinin by interfering with the Ca-associated NOS activity specifically by impeding subcellular trafficking of eNOS.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3