Author:
Fielding Anthony S,Turpin David H,Guy Robert D,Calvert Stephen E,Crawford David W,Harrison Paul J
Abstract
There is no clear explanation why phytoplankton δ13C values are more negative in colder waters, but one current theory suggests that because colder waters hold more CO2, there is less diffusional limitation of CO2. This results in more discrimination against 13C and more negative phytoplankton δ13Cvalues. However, many species are able to actively take up CO2 or HCO3-, the latter being the major inorganic carbon species present in the dissolved inorganic carbon (DIC) pool of modern oceans. A previous study suggests that carbon concentrating mechanism (CCM) induction would affect carbon isotope discrimination, and this study confirms the presence of a relationship between discrimination and induction of a CCM in the marine diatom Thalassiosira pseudonana. CCM induction was measured by determining the half-saturation constant of photosynthesis (K0.5DIC). Values of K0.5DIC increased from 85 to 470 m M DIC over a range of ambient DIC levels from 0.2 to 2.7 mM. The fractionation factor increased from 10 to 21.3omicron over this same range. There was a significant relationship between K0.5DIC and the fractionation factor suggesting that CCM induction state influences carbon isotope discrimination. Other factors that influence discrimination may act through CCM induction.Key words: carbon isotope discrimination, carbon concentrating mechanism, Thalassiosira pseudonana, active carbon uptake, marine phytoplankton.
Publisher
Canadian Science Publishing
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献