Structural behaviour of water sloshing damper with embossments subject to random excitation

Author:

Ju Young-Kyu

Abstract

To improve the serviceability of tall buildings, several types of vibration control systems have been developed. The tuned liquid damper (TLD) has advantages, such as simple adjustment of natural frequency, easy installation, and low maintenance. Since water tanks at the top of tall buildings can be directly modeled as a TLD system, it is more practical than any other vibration control system in Korea. Since most of the tanks in Korea have embossments on the wall, the structural characteristics are different from those of tanks used in other countries. As the damping ratio of the TLD depends on several factors, such as the magnitude and frequency of applied load, the shape of the tank, wall roughness, and so forth, it is difficult to evaluate the control performance of the tank exactly. In this study, the characteristics of the water sloshing damper with embossments (WSDE) are evaluated and the equation for equivalent damping ratio is proposed. To clarify the damping effect of a high-rise building with a damping device subject to random excitation, an experiment of a coupled structural model with a water tank was conducted. The parameters were mass ratio of water to model structure, number of wire screens, and shape factor of the water tank. The peak displacement, acceleration response, and standard deviation of the experimental results are analyzed. The coupled structural model with a water tank shows lower maximum and standard deviation responses than those of the structural model alone.Key words: water sloshing damper with embossment, vibration control, structural test, tall buildings.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3