Transient bottom topography changes in alluvial streams

Author:

Fares Y R

Abstract

The development of a quasi two-dimensional computational model for simulating the transient variations of bed topography profiles in alluvial river channels is reported. The formulation of the model is based on combining the longitudinal flow momentum with the continuity principle of the sediment bed load. The Engelund-Hansen formula is employed in estimating the total sediment bed load along the reach of a river channel. The lateral bed load contribution from the total load is calculated in the same way as in calculating the lateral secondary currents from the main flow velocities. The numerical scheme and the computational procedure used in the study are described in detail. The simulated bed level profiles are verified through comparisons with experimental and field measurements taken from case studies in the literature for different flow conditions, channel characteristics, and sediment properties. The correlation between flow discharge, bed load, boundary friction, and channel slope is discussed. On the basis of the reasonably good comparisons with field data, it may be deduced that the model can be used for predicting the bottom topography variations in river channels.Key words: meandering rivers, bottom topography, sediment transport, bed load, boundary roughness, field measurements, experimental data, computational modelling, finite difference method.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3