Growth temperature affects inflorescence architecture in Arabidopsis thaliana

Author:

Antoun Marlène1,Ouellet François1

Affiliation:

1. Université du Québec à Montréal, Département des Sciences biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.

Abstract

Plants adjust their growth and development to ensure survival under adverse environmental conditions. Nonoptimal growth temperatures can have a major impact on biomass and crop yield. A detailed phenotypic analysis (number and length of rosette and cauline branches, flowers, and buds) in Arabidopsis thaliana revealed that growth temperatures below (12 and 17 °C) and above (27 and 32 °C) the control 22 °C affect branching and flowering. The elongation of internodes on the main stem and of primary branches at cauline leaves is reduced at lower temperatures and increased at higher temperatures. Similar results are observed in plants treated before or after bolting. Our data therefore indicate that plants that have transitioned to the reproductive stage before treatment are slightly less affected by temperature variations than plants that are in their vegetative stage. Our results also suggest that plants need to reach a maximum height (internodes length) before they begin forming floral meristems and that this “maximum height” is dependent on the growth temperature. Plants grown at 17 °C show a slightly reduced branching, while those at 27 °C show increased branching. This suggests that apical dominance is a temperature-dependent phenomenon. This is, to our knowledge, the first extensive analysis of the effect of temperature on Arabidopsis inflorescence development.

Publisher

Canadian Science Publishing

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3