Systematic trends in electronic properties of alkali hydridesThis article is part of a Special Issue on Spectroscopy at the University of New Brunswick in honour of Colan Linton and Ron Lees.

Author:

Aymar Mireille1,Deiglmayr Johannes1,Dulieu Olivier1

Affiliation:

1. Laboratoire Aimé Cotton, CNRS, Bâtiment 505, Université Paris-Sud, 91405 Orsay CEDEX, France.

Abstract

Obtaining ultracold samples of dipolar molecules is a current challenge, which requires an accurate knowledge of their electronic properties to guide the ongoing experiments. Alkali hydride molecules have permanent dipole moments significantly larger than those of mixed alkali species, and, as pointed out by Taylor-Juarros et al. (Eur. Phys. J. D, 31, 213 (2004)) and by Juarros et al. (Phys. Rev. A, 73, 041403 (2006)), are thus good candidates for cold molecule formation. In this paper, using a standard quantum chemistry approach based on pseudopotentials for atomic core representation, large Gaussian basis sets, and effective core polarization potential, we systematically investigate the electronic properties of the alkali hydrides LiH to CsH, to discuss general trends of their behavior. We computed (for the first time for NaH, KH, RbH, and CsH) the variation of their static polarizability with the internuclear distance. Moreover, in addition to potential curves, we determine accurate values of permanent and transition dipole moments for ground and excited states depending on the internuclear distance. The electronic properties of all alkali hydrides are compared with one another, in the light of the numerous other data available in the literature. Finally, the influence of the quality of the representation of the hydrogen electronic affinity in the approach on the results is discussed.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3