Impaired regulation of cardiac function in sepsis, SIRS, and MODSThis article is one of a selection of papers from the NATO Advanced Research Workshop on Translational Knowledge for Heart Health (published in part 2 of a 2-part Special Issue).

Author:

Werdan Karl12,Schmidt Hendrik12,Ebelt Henning12,Zorn-Pauly Klaus12,Koidl Bernd12,Hoke Robert Sebastian12,Heinroth Konstantin12,Müller-Werdan Ursula12

Affiliation:

1. Department of Medicine III, Martin Luther University Halle-Wittenberg, Ernst-Grube Str. 40, D-06097 Halle (Saale), Germany

2. Institute of Biophysics, Department of Physiological Medicine, Medical University of Graz, Graz, Austria

Abstract

In sepsis, systemic inflammatory response syndrome (SIRS), and multiorgan dysfunction syndrome (MODS), a severe prognostically relevant cardiac autonomic dysfunction exists, as manifested by a strong attenuation of sympathetically and vagally mediated heart rate variability (HRV). The mechanisms underlying this attenuation are not limited to the nervous system. They also include alterations of the cardiac pacemaker cells on a cellular level. As shown in human atrial cardiomyocytes, endotoxin interacts with cardiac hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels, which mediate the pacemaker current Ifand play an important role in transmitting sympathetic and vagal signals on heart rate and HRV. Moreover, endotoxin sensitizes cardiac HCN channels to sympathetic signals. These findings identify endotoxin as a pertinent modulator of the autonomic nervous regulation of heart function. In MODS, the vagal pathway of the autonomic nervous system is particularly compromised, leading to an attenuation of the cholinergic antiinflammatory reflex. An amelioration of the blunted vagal activity appears to be a promising novel therapeutic target to achieve a suppression of the inflammatory state and thereby an improvement of prognosis in MODS patients. Preliminary data revealed therapeutic benefits (increased survival rates and improvements of the depressed vagal activity) of the administration of statins, β-blockers, and angiotensin-converting enzyme inhibitors in patients with MODS.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3