The Iceland Research Drilling Project crustal section: variation of magnetic properties with depth in Icelandic-type oceanic crust

Author:

Hall James M.

Abstract

An attempt has been made to identify the processes that give rise to a number of depth trends in the magnetization of a 3.1 km vertical section of Icelandic-type oceanic crust and to assess the possibility that similar processes act, and depth trends occur, in typical oceanic crust. The depth trends in the Icelandic section consist of a general increase in saturation and induced magnetization to 2 km crustal depth, below which flow magnetization decreases while dike magnetization remains constant, and of large changes in flow magnetization that occur on a scale of a few hundred metres below 3 km crustal depth.Increase in saturation and induced magnetization with depth in the upper 2 km is thought to be the result of two processes: a decrease in low-temperature oxidation from the original lava surface to 700–800 m crustal depth, thence an increase in hydrothermal alteration with depth. This interpretation is based on oxide petrography and Curie temperatures, which show a weakly defined minimum in the 700–800 m interval, then an increase to ubiquitous "magnetite" values at just below 2 km crustal depth. Although the relationship between magnetic properties and oxide alteration is reasonably well known for the low-temperature oxidation process from laboratory studies and ophiolite and typical ocean-crust analogs, the change in magnetic properties during hydrothermal alteration is not generally known, nor are ophiolite or typical ocean-crust analogs presently available.Decrease in flow saturation and induced magnetization below 2 km is likely to be the result of alteration of magnetite (sensu lato) to nonmagnetic phases, either on a fine scale to hematite (s.l.) between 2 km and 3 km, or by leaching of iron, leaving anatase pseudomorphs after magnetite (s.l.) below 3 km. The relatively low porosity of the dikes is likely to have protected dike magnetite below 2 km from such oxidation and leaching processes.The study confirms that secondary magnetite in several forms is an important magnetic constituent of the flows in the lower part of the section, particularly where decomposition of primary magnetite is widespread. Secondary magnetite occurs as vermiform or bladelike masses, as rims associated with former silicates, or as fresh continuous magnetite occurring either as subhedral grains or as "reconstructed" primary grains in which relics of sphene-replaced ilmenite lamellae grids are seen.In conclusion, the possibility that the near-surface magnetization of typical ocean crust is commonly the minimum value for a layer extending downwards to the onset of an epidote-bearing facies deserves serious consideration, as does the possibility that strong, stable magnetization of secondary origin occurs in flows where dike density becomes significant.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3