Abstract
A homonuclear linear [Formula: see text] coupling spin cluster with the middle particle driven by an external time-dependent magnetic field is investigated by using the method of algebraic dynamics. The exact analytical solutions of the time-dependent Schrodinger equation of the spin cluster system are derived and employed to study the geometric phase. An alternative expression of the geometric phase in each eigenstate is obtained. It is shown that the geometric phase is related to the external magnetic-field parameter θ (the angle between the magnetic field and the Z axis) and the effective coupling strength Jn. Based on the relation, how the geometric phase depends on the coupling strength Jn in different reducible subspace is discussed.PACS Nos.: 33.20.Wr, 03.65.Fd, 03.65.Vf
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy