Geotechnical parameters and behaviour of uranium tailings

Author:

Matyas Elmer L.,Welch Donald E.,Reades Denys W.

Abstract

The results of laboratory and in situ testing and test blasting, the observations made on a test embankment, and a description of actual construction practice associated with engineering studies for the management of uranium mill tailings at Elliot Lake, Ontario are presented. Relative density values inferred from standard penetration tests and cone penetrometer tests are shown to be inconsistent with relative density values determined from maximum and minimum void ratios. Some of the data contradicts existing correlations.The compressibility of in situ saturated tailings is presented in graphical form in terms of void ratio, vertical effective stress, and mean grain size. Hydraulic conductivity is shown to range over many orders of magnitude, depending on the void ratio. The observations on an instrumented test embankment are used to explain the appropriate selection of geotechnical parameters that gave good agreement between back-calculated and observed settlements. One-dimensional consolidation theory was found to be valid for the embankment case. It is necessary to account for changes in soil properties that occur during the consolidation process in order to obtain a good fit between back-calculated and observed settlements. The successful use of tailings sand for embankment construction is described. On the basis of normalized standard penetration resistance values, it is concluded that localized zones of saturated tailings may be prone to liquefaction under predicted earthquake loadings. Key words: uranium tailings, geotechnical parameters, relative density, test embankment, liquefaction.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3