Initiation of static liquefaction and the role of K0 consolidation

Author:

Fourie A B,Tshabalala L

Abstract

The potential for static liquefaction of hydraulically placed sands and silts is now well recognised. A particular category of this type of operation, tailings disposal facilities constructed using the upstream method, has come under increased scrutiny due to the large number of failures of these structures. Although the conditions that render a particular deposit susceptible to potential liquefaction are now well known, being a combination of void ratio and mean effective stress that places the material state above its steady state value, the same cannot be said about our ability to predict the stresses at which liquefaction will be initiated. The concept of a collapse surface, derived from the locus of peak shear stress values from undrained compression tests on isotropically consolidated specimens, attempts to provide a method for predicting the onset of liquefaction. As confirmed in this paper, however, application of the collapse surface concept to actual tailings dam facilities results in factors of safety based on an effective stress approach that are significantly less than unity for facilities that have not failed. On the other hand, shear strength values derived from ultimate state conditions are unconservative, predicting factors of safety significantly in excess of unity for facilities that have failed. A comparison of monotonic undrained triaxial compression tests on both isotropically- and K0-consolidated specimens of gold tailings suggests that the resolution to this dilemma lies in the recognition that a kinematic yield surface, which is a function of the consolidation stress path followed, develops in stress space. The collapse surface derived from undrained loading of K0-consolidated loose specimens is shown to provide a greatly improved capacity for predicting the onset of liquefaction under undrained loading conditions.Key words: static liquefaction, tailings, collapse surface, anisotropic.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3