Generalized rate law for vibrational relaxation of a pure diatomic gas

Author:

Teitelbaum Heshel

Abstract

The master equation for the vibrational relaxation of a pure gas of diatomic molecules AB is reduced to a simple analytical rate law. Anharmonicity is accounted to first order, and both T–V and near-resonant V–V energy transfer processes are included with the limitation that Δν = ± 1. L and au–Teller type transition probabilities are used to scale the rate constants. The rate law consists of a pair of simultaneous first order non-linear differential equations — one for the mean vibrational energy, [Formula: see text], and one for the mean squared vibrational energy [Formula: see text]; or equivalently a non-linear second order differential equation for [Formula: see text], with respect to time, t, plus an algebraic equation for [Formula: see text] These lead to[Formula: see text]where χe is the anharmonicity factor, N the molecular concentration, νe,. the spectroscopic vibrational frequency; ν′ = νe (1 − χe); ν″ = νe. (1 − 3χe); [Formula: see text]; 1/τ = Nk1.0(1 − e−hν″/KT); k1.0 the rate constant for the process AB(ν = 1) + AB(ν) → AB(ν = 0) + AB(ν); and [Formula: see text] the rate constant for the process 2AB(ν = 1) → AB(ν = 0) + AB(ν = 2). It is shown that the Bethe–Teller law, [Formula: see text], is valid only in the limit of zero anharmonicity or slow V–V processes, or when the initial population is Boltzmann, such as in shock tube experiments. Furthermore, a population distribution which is initially Boltzmann will remain so; whereas a non-Boltzmann distribution rapidly becomes a Boltzmann distribution on a time scale determined by the sum of T–V and V–V rate constants. The present study allows one to gauge the importance of two common assumptions: the validity of the Bethe–Teller law and the existence of a Boltzmann distribution or vibrational temperature during the relaxation.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3