Author:
Das M.,Thapar R.,Rajeshwar K.,DuBow J.
Abstract
The electrical behavior of oil sand samples from the Athabasca, N. W. Asphalt Ridge, P. R. Spring, and Circle Cliffs deposits was studied in the frequency range 50 Hz – 103 MHz at ambient temperature and up to 550 °C. Anomalously high dielectric constants (ε′) were measured for these samples at low frequencies (<1 kHz) and at elevated temperatures (>200 °C). Accumulation of mobile charges at the phase boundaries in the oil sand matrix was probably responsible for this effect. These mobile charges were presumably created by thermal fragmentation of oil sand bitumen. The anomalous increase in the low-frequency (50 Hz – 1 MHz) ε′ values at temperatures above 150 °C was also traced to interfacial polarization effects. Dipole relaxation behavior was observed for the various samples at frequencies below ~1 kHz and in the temperature range 150–470 °C. Two distinct relaxation processes were identified. The low-temperature (150–400 °C) process had activation energies for dipole orientation ranging from 4.0 to 9.0 kJ/mol depending on the oil sand specimen. The second relaxation process, which occurred at temperatures above 400 °C, had significantly higher activation energies (30–34 kJ/mol). The occurrence of these dipole relaxation peaks may be relevant in the use of electrical techniques to map the location of pyrolysis zones in in situ oil sand retorts. Measurements on the Athabasca samples in the high-frequency range (1–103 MHz) revealed distinct changes in the dielectric parameters associated with the loss of water from the oil sand matrix. The electrical behavior of oil sands is represented in terms of an equivalent circuit model comprising discrete RC elements corresponding to various components in the oil sand matrix. Such a representation was found to aid in an assignment of the observed changes in the electrical properties with frequency and temperature to distinct physical or chemical processes occurring in the oil sand matrix.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献