Scale effects in the kinematics and dynamics of swimming leeches

Author:

Jordan Christopher E

Abstract

Slender-bodied organisms swimming with whole-body undulations exhibit what appears to be a high degree of kinematic parameter conservation, which is independent of body size. However, organisms of very different sizes swim in fundamentally different physical realms, owing to the relative scaling of viscous and inertial fluid stresses as a function of size and speed. In light of the size-dependent fluid forces, the kinematic constancy suggests three hypotheses: (1) swimming organisms adopt a single "ideal" swimming mode requiring the modification of muscle forces or motor patterns through ontogeny, (2) swimming kinematics are determined predominantly by the passive mechanical interaction of the body and the fluid, resulting in a single swimming mode independent of absolute body size, or (3) while undulatory swimming kinematics may be similar between organisms, there are important size-dependent kinematic differences. In this study, I address this issue by examining the swimming kinematics and dynamics of the medicinal leech Hirudo medicinalis L. as a function of body size. Over a 5-fold increase in body length, the relative amplitude of body undulations during swimming did not change; however, swimming speed, propulsive wave speed, and propulsive wave frequency all decreased, while propulsive wave number increased slightly, strongly supporting hypothesis 2. To determine the source of the observed size-dependent swimming kinematics, I manipulated the dynamic viscosity of the organism's fluid environment to alter the constraints placed on swimming behavior by the physical surroundings. In the elevated-viscosity treatment, all kinematic parameters changed in the opposite direction to that predicted by hypothesis 2, rejecting both the idea that swimming kinematics are simply determined by passive mechanical interactions and that leeches have a target swimming mode under active control.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diving into a Simple Anguilliform Swimmer’s Sensitivity;Integrative and Comparative Biology;2020-09-16

2. Complex modal analysis of the movements of swimming fish propelled by body and/or caudal fin;Wave Motion;2018-04

3. Meandering worms: mechanics of undulatory burrowing in muds;Proceedings of the Royal Society B: Biological Sciences;2013-04-22

4. Challenging zebrafish escape responses by increasing water viscosity;Journal of Experimental Biology;2012-06-01

5. Optimal Strouhal number for swimming animals;Journal of Fluids and Structures;2012-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3