Author:
Merica Simona G,Jedral Wojceich,Lait Susan,Keech Peter,Bunce Nigel J
Abstract
Electrolysis has been studied as a possible method to treat DDT wastes. In methanol, the major process was dehydrochlorination to DDE followed by further reduction. In an aqueous emulsion containing 1% heptane and 0.1% Triton SP-175®, DDT was reduced at a deposited lead electrode with sodium sulphate as the supporting electrolyte by sequential hydrodechlorination of the aliphatic chlorine atoms. An excellent material balance was achieved, but the current efficiency was poor, even at low current densities. Electrooxidation of DDT was also investigated; in aqueous solutions or emulsion, little oxidation occurred because of competing oxidation of water at the highly positive potentials needed to oxidize DDT. In acetonitrile, electrooxidation occurred with high current efficiency by way of "electrochemical combustion" of DDT and its intermediate oxidation products to CO2.We conclude that development of an electrolytic technology for destroying DDT wastes is unlikely.Key words: electroreduction, electrooxidation, voltammetry, surfactant media.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献