Author:
Laouris Y,Bevan L,Reinking R M,Stuart D G
Abstract
Associations were quantified between the control force and fatigue-induced force decline in 22 single fast-twitch-fatigable motor units of 5 deeply anesthetized adult cats. The units were subjected to intermittent stimulation at 1 train/s for 360 s. Two stimulation patterns were delivered in a pseudo-random manner. The first was a 500-ms train with constant interpulse intervals. The second pattern had the same number of stimuli, mean stimulus rate, and stimulus duration, but the stimulus pulses were rearranged to increase the force produced by the units in the control (prefatigue) state. The associations among the control peak tetanic force of these units, 3 indices of fatigue, and total cumulative force during fatiguing contractions were dependent, in part, on the stimulation pattern used to produce fatigue. The associations were also dependent, albeit to a lesser extent, on the force measure (peak vs. integrated) and the fatigue index used to quantify fatigue. It is proposed that during high-force fatiguing contractions, neural mechanisms are potentially available to delay and reduce the fatigue of fast-twitch-fatigable units for brief, but functionally relevant, periods. In contrast, the fatigue of slow-twitch fatigue-resistant units seems more likely to be controlled largely, if not exclusively, by metabolic processes within their muscle cells.Key words: cat, catch-like property, fatigue, force, motor units, size principle.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献