Author:
Braun Phyllis C.,Hector Richard F.,Kamark Michael E.,Hart John T.,Cihlar Ronald L.
Abstract
Experiments were conducted to gain insight concerning the mechanism(s) whereby cerulenin and sodium butyrate affect chitin synthesis in Candida albicans. In vitro studies with isolated membrane-bound chitin synthase from C. albicans, strain 4918, showed that neither agent affected the level of either unactivated or trypsin-activated enzyme activity. Subsequent studies utilizing protoplasts revealed that early in the cell wall regeneration process, cells treated with cerulenin or butyrate synthesized chitin at a rate equal to untreated controls, as measured by the incorporation of [3H]-N-acetylglucosamine (GlcNAc) into acid–alkali insoluble material. However, after 40 min of incubation, the incorporation of [3H]GlcNAc into chitin is reduced in cells treated with either agent. On the other hand, samples taken during the same time intervals and analyzed by flow cytometry suggested that the amount of chitin synthesis in treated and untreated cells was identical. A marked decrease in fluorescence was observed in similar experiments using polyoxin D, a direct inhibitor of chitin synthase activity. Experiments that measured uptake of [3H]GlcNAc into both whole cells and protoplasts demonstrated that cerulenin and butyrate had no effect on the transport of the chitin precursor.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献