Growth and water-use characteristics of Romaine lettuce cultivated in Histosol as affected by irrigation management, compaction, and seeding type

Author:

Dessureault-Rompré Jacynthe1,Caron Jean1,Plamondon Laurie1,Gaudreau Linda2,Jutras Sylvain3,Lafond Jonathan A.1

Affiliation:

1. Soil and Agri-Food Engineering Department, Laval University, 2480 Hochelaga Boulevard, Québec, QC G1V 0A6, Canada.

2. Phytology Department, Laval University, 2480 Hochelaga Boulevard, Québec, QC G1V 0A6, Canada.

3. Wood and Forest Science Department, Laval University, 2405 Terrasse Street, Québec, QC G1V 0A6, Canada.

Abstract

In Canada, most lettuce (Lactuca sativa L.) is produced on cultivated organic soils, which can be very productive but are also very sensitive to degradation and compaction. The objective of this work was to evaluate the effect of soil compaction, irrigation thresholds, and transplant type on the growth and water-use characteristics of Romaine lettuce that is grown in organic soil. The experiments were conducted in greenhouses at Laval University. Tensiometers and time-domain reflectometer probes were used to characterize the water-use characteristics of the Romaine lettuce. Most of the growth characteristics of the Romaine lettuce, with the exception of the dry weight, were significantly influenced by the available rooting depth (soil column height) and by the irrigation threshold used. Lettuce water uptake decreased significantly as the depth increased. In addition, in drier conditions, the deeper soil layers contributed more to the total water uptake than the surface soil layers. The water productivity was lower in the presence of a compacted layer combined with a direct seeding treatment, compared with all of the other treatments. First, it is concluded that the irrigation method should allow a certain degree of dryness by use of a lower irrigation threshold (ideally between −20 and −30 kPa) to stimulate deep rooting. Second, the use of small lettuce plant preseeded in small block of peat substrate instead of direct seeding in the field can compensate for a possible compaction effect.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3