Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season

Author:

Burd Katheryn1,Estop-Aragonés Cristian1,Tank Suzanne E.2,Olefeldt David1

Affiliation:

1. Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2H1, Canada.

2. Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada.

Abstract

Boreal peatlands are major sources of dissolved organic carbon (DOC) to downstream aquatic ecosystems, where it influences carbon cycling and food web structure. Wildfire and permafrost thaw alter peatland vegetation and hydrology and may affect the quantity and chemical composition of exported DOC. We studied the influence of wildfire and thaw on microbial and photochemical lability of near-surface porewater DOC, assessed through 7 d incubations. We carried out these incubations in spring, summer, and fall but only found differences in spring when DOC biodegradability (% loss during dark incubations) increased with lower DOC aromaticity and C/N ratios. During spring, the most labile DOC was found in recently formed thermokarst bogs along collapsing peat plateau edges (25% loss), which was greater than in mature sections of thermokarst bogs (3%), and peat plateaus with intact permafrost (9%). Increased DOC lability following thaw was likely linked to high DOC production and turnover associated with productive hydrophilic Sphagnum mosses and sedges, rather than thawed permafrost peat. A wildfire (3 yr prior) reduced DOC biodegradability in both peat plateaus (4%) and rapidly collapsing peat plateau edges (14%). Biodegradability of DOC in summer and fall was low across all sites; 2% and 4%, respectively. Photodegradation was shown to potentially contribute significantly to downstream DOC degradation but did not vary across peatland sites. We show that disturbances such as permafrost thaw and wildfire have the potential to affect downstream carbon cycling, particularly as the largest influences were found in spring when peatlands are well connected to downstream aquatic ecosystems.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3