Influence of long-term feedlot manure amendments on soil hydraulic conductivity, water-stable aggregates, and soil thermal properties during the growing season

Author:

Miller J.J.1,Beasley B.W.1,Drury C.F.2,Larney F.J.1,Hao X.1,Chanasyk D.S.3

Affiliation:

1. Agriculture and Agri-Food Canada, 5403-1st Avenue South, Lethbridge, AB T1J 4B1, Canada.

2. Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, ON N0R 1G0, Canada.

3. Department of Renewable Resources, University of Alberta, Room 751, General Services, Building, Edmonton, AB T6G 2H1, Canada.

Abstract

Long-term application of feedlot manure to cropland may change the physical properties of soils. We measured selected soil (surface) physical properties of a Dark Brown Chernozemic clay loam where different amendments were annually applied for 15 (2013), 16 (2014), and 17 (2015) yr. The treatments were stockpiled (SM) or composted (CM) manure with either straw (ST) or wood-chip (WD) bedding applied at three rates (13, 39, and 77 Mg ha−1) and an unamended control. The effect of selected or all treatments on selected properties was determined in 2013–2015. These properties included field-saturated (Kfs) and near-saturated hydraulic conductivity or K(ψ), bulk density (BD), volumetric water content, soil temperature, soil thermal properties, and wet aggregate stability. The hypotheses that selected soil physical properties would improve more for treatments with greater total carbon in the amendments (SM > CM, WD > ST) was rejected. The exceptions were significantly (P ≤ 0.05) lower soil BD for SM than CM and WD than ST for certain dates, and lower soil thermal conductivity for WD than ST. Most soil physical properties generally had no response to 15–17 yr of annual applications of these feedlot amendments, but a few showed a positive response.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3