Nitrous oxide and carbon dioxide emissions from surface and subsurface drip irrigated tomato fields

Author:

Edwards K.P.12,Madramootoo C.A.12,Whalen J.K.12,Adamchuk V.I.12,Mat Su A.S.12,Benslim H.12

Affiliation:

1. Department of Agriculture and Environmental Sciences, Macdonald Campus, McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada

2. Department of Agriculture and Environmental Sciences, Macdonald Campus, McGill University, 21 111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.

Abstract

Irrigation practices change the soil moisture in agricultural fields and influence emissions of greenhouse gases (GHG). A 2 yr field study was conducted to assess carbon dioxide (CO2) and nitrous oxide (N2O) emissions from surface and subsurface drip irrigated tomato (Solanum lycopersicum L.) fields on a loamy sand in southern Ontario. Surface and subsurface drip irrigation are common irrigation practices used by tomato growers in southern Ontario. The N2O fluxes were generally ≤50 μg N2O-N m−2 h−1, with mean cumulative emissions ranging between 352 ± 83 and 486 ± 138 mg N2O-N m−2. No significant difference in N2O emissions between the two drip irrigation practices was found in either study year. Mean CO2 fluxes ranged from 22 to 160 mg CO2-C m2 h−1 with cumulative fluxes between 188 ± 42 and 306 ± 31 g CO2-C m−2. Seasonal CO2 emissions from surface drip irrigation were significantly greater than subsurface drip irrigation in both years, likely attributed to sampling time temperature differences. We conclude that these irrigation methods did not have a direct effect on the GHG emissions from tomato fields in this study. Therefore, both irrigation methods are expected to have similar environmental impacts and are recommended to growers.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3