Soil nitrous oxide emissions associated with conversion of forage grass to annual crop receiving annual application of pig manure

Author:

Adelekun Mayowa1,Akinremi Olalekan1,Tenuta Mario1,Nikièma Paligwendé2

Affiliation:

1. Department of Soil Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

2. Manitoba Sustainable Development, Winnipeg, MB R3J 3W3, Canada.

Abstract

The disruptive land-use change during forage grass conversion to annual crop can be critical for determining nitrous oxide (N2O) emissions, but this is an understudied period. We measured soil N2O fluxes (using closed static vented chambers) together with potential environmental drivers of these fluxes from liquid pig manure (LPM) and solid pig manure (SPM) applied to an annual crop (ANN) and perennial forages (FPP) that was converted to annual crop. Unamended plots were used as a control (CON). The results showed that in 2013, average soil nitrate-N was significantly higher on the recently converted FPP (ranging from 19 to 83 mg N kg−1) than the continuous ANN plots (from 16 to 35 mg N kg−1). The recently converted perennial forage system produced three times greater N2O than the continuous annual system, which is likely a result of accelerated N mineralization from the accumulated soil organic matter (over 4 yr) and grass residues of the recently killed forage grasses. However, during the second year of the study when the FPP plots were reseeded to perennial grasses, the system emitted 30% less N2O than the ANN system. These results suggest that including perennial forage grass in rotation with annual crops can provide N-saving and climate change mitigation benefits; however, some of the N stored in the soil would be lost when the perennial grass plots are cultivated to grow annual crops.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3